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A simple model is proposed to compute electron-diatomic molecule elastic differential cross-sections at inter-
mediate energies within the framework of an analytical local optical potential. In a spherical harmonic expansion
of the molecular potential we treat the isotropic term with the partial-wave decomposition and apply the inde-
pendent atom model (IAM) on all higher orders. This model is seen to properly converge to the IAM at high
energies, while bringing significant improvement at lower energies. We compare the results with a well-tested
program called ELSEPA, tailored for high-energy electron-atom scattering and address its further extension to
molecules with the method proposed. The simplicity of the calculations and the encouraging agreement in shape
with experimental data could promote attractiveness among plasma physics simulations in need of coherent and
well-resolved differential cross-sections.

The importance of (Differential) Cross-sections for
electron-molecule collisions can be found in many ap-
plications of plasma physics, such as Monte-Carlo sim-
ulations of electron swarms in gases[4], atmospheric
physics[43], electric discharges[106], gas lasers[105], run-
away mechanisms[17], plasma catalysers. They can either
be obtained from experimental measurements[10, 20, 103] or
quantum calculations[11, 29, 57, 79].

Lately, free online databases[42, 73] have been set up to
readily provide cross-sections from various sources. Addi-
tionally, freely available codes such as ELSEPA[84, 85] or
UKRmol[64] enable the generation of elastic differential cross
sections (DCS) for all atoms and many polyatomic molecules
in the complementary domains of high-energy and low-energy
scattering.

When it comes to generating a database of good quality
and resolution, there arise some difficulties. Experimental
databases can be sparse, lack data at both angular extremes
and can be controversial on occasions due to different meth-
ods used for calibration, angular allowance aperture, preci-
sion in energy and angle[21]. Codes on the other hand can
consistently generate DCS but might take considerable time
and inevitably are limited to a range of validity. For instance,
ELSEPA[84, 85], works remarkably well for molecules in the
independent atom model[39] impacted by electrons of more
than 100 eV, but is less accurate in the intermediate range 10-
100 eV, where typically, the DCS gradually evolves from a
roughly symmetric cusp at 90°, to a forward angular distri-
bution. On the other end, UKRmol (and its perfected dis-
tributions for industrial applications QUANTEMOL-N[102]-
EC[22]), covers all cross-sections for low-energy electron-
molecule interactions but is computationally costly and re-
quires more user experience. This leaves a gap in the in-
termediate energy range, which is known to be fillable with
variational[38, 59] or close-coupling[56, 65, 96] methods.

Alternatively, there have been some publications centered
on a considerably simpler analytical[47, 82] description of the

DCS or a partial-wave[7, 48, 50] analysis applied to an ana-
lytical optical potential which yielded reasonable results over
different ranges of validity. So far, accuracy in producing out-
puts has been pushed jointly with the level of sophistication
while using approximations to abridge computational costs
where appropriate.

We propose here instead to withdraw from complexity, and
give practical recommendations on how to obtain accurate
DCS, yet using the simplest tools and models available. We
show how replacing the zeroth (isotropic) interference term
in the independent atom model by a (molecular) partial-wave
scattering amplitude can considerably extend the independent
atom model’s range of applicability toward the lower end of
intermediate energies. The DCS is reconstructed based on its
analogous decomposition in the first Born approximation. For
this, we construct an optical potential taken from the simplest
models[72, 80, 83, 91] available for electron-molecule scatter-
ing. The aim is to provide the community of plasma physics
with the tools necessary to generate DCS with relative ease.
This work is partly based on Salvat et al. [82]’s simple model
for electron-atom scattering, which we extended to apply on
diatomic molecules.

The sections are structured into: a short introduction to
potential scattering theory, a presentation of the optical po-
tential employed, a description of three ingredients featuring
in our approach, namely potential harmonic expansion, inde-
pendent atom model (IAM) and partial-wave decompositions;
and finally results with suitable comparisons in different en-
ergy domains. Due to their notable presence in (atmospheric)
gaseous electronics, we focus on H2,N2 and O2 in particular,
and briefly discuss NO and CO.

I. POTENTIAL SCATTERING

The potential scattering formalism, adequate for describing
weakly inelastic electron-molecule collisions[15, 56, 59, 97],
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FIG. 1. The scattering of an electron about a diatomic molecule of
internuclear distance R viewed from a fixed (laboratory) reference
frame with the z-axis aligned with the incoming direction.

relies upon the Schrödinger equation for the electron’s static
wavefunction ψ(r) evolving in a space occupied by an effec-
tive interaction potential V(r,R) traditionally centered on the
diatomic molecule’s center of mass assumed, in our cases, to
lie at the midpoint of the interatomic separation R:

− ℏ
2

2µ
△ψ(r)+V(r,R)ψ(r) = Eψ(r) . (1)

The mass of the target Mt, usually considered infinitely
large[97, pg. 220] compared to the electron me, can option-
ally be roughly accounted-for via the reduced mass of the
system[69]: µ = meMt/(Mt +me) ≊ me. In (1), E represents
the asymptotic kinetic energy of the electron E ≡ ℏ2|k|2/2me.

The boundary condition applied to the wavefunction[14]
relates the incident and outgoing plane-waves of respective
wavectors k0 and k:

ψ(r) −→
r→∞ exp(ik0r)− 2µ

ℏ2
exp(ikr)

4πr

∫
r′

e−ikr′V(r′,R)ψ(r′)d3r′ .

(2)
The overall scattering process described can be visualised

on figure 1.
For vibrationally elastic collisions at intermediate energies,

one can additionally assume that the electron’s kinetic energy
greatly surpasses the rotational excitations of the molecule
leading to two simplifications: the neglect of the energy
loss[99] |k0| ≈ |k|, and the adiabatic[18, 66, 97] (or impulse)
approximation in which the molecule remains fixed in space
during the entire collision process.

For a linear molecule in a Σg state (molecular electronic
orbital and spin momenta with null projection on the internu-
clear axis) all rotational states of excitation can be described
with spherical harmonics Y M

J (R̂) of the molecular axis R̂ with
J,M quanta for the rotational momentum and its projection
(on the z-axis of the reference frame on figure 1). The scatter-
ing amplitude for an excitation J0,M0→ J,M is given by[99,
p.117]:

f (kJM← k0J0M0) = (3)

− 2µ
4πℏ2

∫
R̂

∫
r′

Y M∗
J (R̂)e−ikr′V(r′,R)ψR(r′)Y M0

J0
(R̂)d3r′dR̂ .

The parametric dependence of the wavefunction ψR upon
R makes the integration cumbersome[57]. Nevertheless,
a way around exists by considering the first order’s solu-
tion of the iterative equation (2) known as the (first) Born
approximation[99, p.116]. It effectively replaces the full
wavefunction by the incident plane-wave in (2)’s integrand:

f̃ (kJM← k0J0M0) = (4)

− 2µ
4πℏ2

∫
R̂

∫
r′

Y M∗
J (R̂)e−ikr′V(r′,R)eik0r′Y M0

J0
(R̂)d3r′dR̂ .

Finally, defining the angle θ between k0 and k, one can con-
struct the differential cross section (DCS) from the scattering
amplitude in either case, by summing over all final M and av-
eraging over all initial M0 rotational magnetic states[99].

dσ
dΩ J←J0

=
k
k0

1
2J0+1

∑
M,M0

| f (kJM← k0J0M0)|2 . (5)

In the rest of the article, in accordance with the customs
of quantum physics, atomic units will be used; in which case
c = ℏ = 1 = e = me, so that kinetic factors in (1-4) and elec-
tric factors in potentials can be simplified. Units of length
and energy are expressed respectively in Bohr’s atomic radii
a0 = 52.918.. pm and Hartrees ≊27.211 eV. In the next sec-
tion, we present a simple local optical potential for diatomic
molecules.

II. OPTICAL POTENTIAL

The effective interaction between the electron and the
molecule is approximated by an optical model potential. It
is traditionally separated into the static, exchange, polarisa-
tion and absorption terms; for each of which we selected and
adapted the simplest models available in the literature.

A. Static

Roughly speaking, a diatomic molecule taken from the per-
spective of an electron scattering at an energy fairly above the
ionisation threshold can be viewed as an aggregate of two sep-
arate atoms[84]. The potential Vs of the atom itself can be ap-
proximated by a sum of screened-Coulomb (Yukawa) poten-
tials. Such potentials have the remarkable property[27, p.109-
110] that their related electronic density ρ (through Poisson’s
equation[76, p.8]) is also uniquely composed of Yukawa-type
terms:
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Atom(Z) H(1) C(6) N(7) O(8)

γ
-184.39 0.1537 0.0996 0.0625
185.39 0.8463 0.9004 0.9375

λ
2.0027 8.0404 10.812 14.823
1.9973 1.4913 1.7987 2.0403

TABLE I. Yukawa two-term fits[83] to Dirac-Hartree-Fock-Slater
calculated atomic potentials. The parameters are to be used as in
eq. (6) and (7)

Vs(r) = − e2

4πϵ0
Z

NY∑
i=1

γi exp(−λir)/r ; with
NY∑
i=1

γi = 1 (6)

ρ(r) =
Z
4π

NY∑
i=1

γi

λ2
i

exp(−λir)/r . (7)

The normalisation on γi coefficients constrains the elec-
tronic charge to be equal to the atomic charge number Z. As
a consequence of the units chosen, the electric factor for the
potential can be omitted and a 4π factor is introduced below
Z in the density equation. In the following we will use Salvat
et al. [83]’s two-term fits for the first-row atoms, for which we
give the parameters in table I.

Any deformation of the electron cloud due to the molecular
bond, including multipole terms (such as the dipole and the
quadrupole) are neglected in the present study.

B. Exchange

The exchange potential represents the possibility[98, §3]
that the incident electron replaces and ejects a molecular elec-
tron of identical spin. This effect, nonlocal[16, eq.(2.18)] by
nature, can be approximated[80] by a simple local potential in
our limiting case of relatively high incident energies:

Vex(r) ≈ −πρ(r)
(E−Vs(r))

. (8)

C. Polarisation and Correlation

The presence of the charged electron induces a deforma-
tion on the molecule’s electron cloud which is typically rep-
resented by correlation (near-field) and polarisation (far-field)
potentials. Intuitively, the first part correlates the displace-
ment of the molecular cloud generating a hole[30] around
the intruding electron, while the second part emerges from
the dipole induced by a displacement of the electronic cloud
through its (isotropic) polarisability α0, neglecting the non-
isotropic part. Both effects can be crudely incorporated into a
simple Buckingham[8, 28] potential:

Vp(r) = − α0

2(r2+ r2
c )2

, (9)

with rc =
√

6E/Eexc . (10)

The cutoff radius rc is proposed here to match the sec-
ond order of the asymptotic[25, 72] non-adiabatic polarisa-
tion, which depends both on an average excitation Eexc of the
molecule and on the energy E of the incident electron (effec-
tively reducing polarisation effects at higher energies). It can
be seen as a (third) alternative to the two propositions sug-
gested by Onda [71] about cutting off adiabatic polarisation at
small ranges and high velocities.

The average excitation Eexc has been widely used as a tun-
able parameter and could even take values higher than the ion-
isation threshold Eion as can be seen in Jain and Baluja [44,
table II]. We shall follow Onda[72]’s suggestion (p.87 §II.A)
and set Eexc ≡ Eion. Lower values would result in flatter DCS
at small angles in figure 3.

D. Absorption

The last term in the effective optical potential is the absorp-
tion potential Va (sometimes[95] viewed as the imaginary part
of the “complete” polarisation potential) which decreases the
scattered flux at medium to wide angles due to particle losses
into an inelastic channel of electronic excitation. This po-
tential is purely negative imaginary (cf. its use in (13)) and
is interpreted as an absorption probability −2Va/ℏ per unit
time[81, §II.B]. We use a widely implemented quasifree lo-
cal model[91] given by:

Vabs(r,E) = −ℏ
2

vloc(r)ρ(r)σb(kF(ρ(r)),E) , (11)

with the local scattering electron velocity vloc and cross-
section σb for inelastic collisions expressed in terms of the
Fermi momentum[91, eq. 2] kF =

3
√

3π2ρ(r):

vloc =
√

2(E−Vse)/me (12a)

σb(kF ,k) =
4π
k2

 1
2Eth

− k′2− 3
5 k2

F

(k′2− k2
F)2
+H

 : k′ > kmin ,(12b)

H =
2

5k3
F

(k2
F + k2

min− k′2)5/2

(k′2− k2
F)2

: k2
F + k2

min > k′2 ,(12c)

k2
min = k2

F +2Eth , (12d)

k′2 = k2−2
(

1
r
− Vs(r)

Z

)
. (12e)

The potential Vse in (12a) is simply the sum of static (6)
and exchange (8) potentials defined previously. We apply the
modification to the original potential introduced by Blanco
and Garcı́a [5] by using k′ as defined in (12e), that combines
the local scattering electron momentum to which the local
binding energy of the target electron is subtracted. Without
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this correction, the absorption potential would be overesti-
mated and produce distortions in the DCS greater than those
seen on the right column of figure 3.

E. Sum

Originally, the individual atomic potential VA is simply the
sum of electrostatic (s), exchange (e), polarisation (p) and ab-
sorption (a) potentials. However, since the molecular polarisa-
tion is not necessarily equal to the sum of atomic polarisations,
we propose to build the total diatomic potential V(r) of atoms
A and A′, with two displaced atomic potentials without polar-
isation V sea

A (r±R/2) derived from their atomic density distri-
butions ρ(r±R/2), and a total molecular polarisation centered
on the internuclear midpoint M:

V sea
A (r) = Vs(r)+Vex(r)+��@@Vp + iVabs(r) , (13)

V(r) = V sea
A

(∣∣∣∣∣r− R
2

∣∣∣∣∣)+V sea
A′

(∣∣∣∣∣r+ R
2

∣∣∣∣∣)+Vp(r) . (14)

As we will see later in sec. III D, it will be very useful to
isolate the isotropic term in the molecular potential through
a Legendre polynomial expansion in the cosine of χ (see fig-
ure 1), the angle between r and R:

V(r) =V0(r)+
∞∑

l=1

Vl(r)Pl(cosχ) , (15)

V0(r) ≡ V sea
A0 (r)+V sea

A′0(r)+Vp(r) . (16)

For simplicity, we will only consider the explicit expression
for V0. The higher-order terms will be implicitly treated via
the independent atom approximation seen below. The spheri-
cal averages of the decentered atomic potentials V sea

A0 and V sea
A′0

are calculated as follows. For the static part, the isotropic
component of a decentered Yukawa potential can be obtained
from the first term of its addition theorem[61, p.107]:

Z
2

∫ +1

−1

exp(−λ(r±R/2))
|(r±R/2)| dξ = Z

sinh(λr<)
λr<

exp(−λr>)
r>

. (17)

The integral in (17) operates on ξ = cosχ and r< (r>) corre-
spond to the lesser (greater) among r and R/2.

Unfortunately, the exchange and absorption potentials Vea

do not lend themselves to a similarly straightforward expres-
sion for their spherically symmetric term. The averaging
ought to be made numerically as :

Vea
0 (r)=

1
2

∫ 1

−1

Vea
A


√

r2+
R2

4
− rRξ

+Vea
A′


√

r2+
R2

4
+ rRξ


dξ

(18)
Nevertheless, we can first attempt to approximate Vea

0 by
assuming that the non-linear density-dependent part of the ex-
change and absorption potentials is sufficiently small so that

their spherical average can be matched to that of the molec-
ular density ρ0. The error committed thus at small radii was
checked to lie within 15% and becomes negligible for r ≥R/2.
At intermediate energies, the exchange and absorption terms
are of minor importance compared to the static potential and
the resulting DCS should not be significantly affected. In the
results section, we assess the validity and limitations of this
additional simplification. The approximate expression for V0
(16) now becomes:

V0(r) ≈ Vs0(r)− πρ0(r)
E−Vs0(r)

− α0

2(r2+ r2
c )2

− i
vloc

2
ρ0(r)σb(kF(ρ0(r)),E) ; (19)

Vs0(r) = −
∑
A,A′

Z
NY∑
i=1

γi
sinh(λir<)
λir<

exp(−λir>)
r>

, (20)

ρ0(r) =
∑
A,A′

Z
4π

NY∑
i=1

γi

λ2
i

sinh(λir<)
λir<

exp(−λir>)
r>

. (21)

For homonuclear molecules, A is simply A’ and their sum
in (20-21) is replaced by a factor 2. In the rest of the article,
the atomic potential V sea

A will be written as VA implying that
static, exchange and absorption contributions are all included.

Ultimately, this spherical decomposition of the potential
will enable us to perform a simple partial-wave expansion
(sec. III C) with V0(r), and use it as input to the IAM (sec.
III B).

III. APPROXIMATIONS

A. Potential Harmonic Expansion

To construct a DCS from the Legendre expansion of the po-
tential in (15), it is most instructive to decompose it in the first
Born approximation, which for a rotational excitation from
degenerate states J0 to J combines (4) with (5) to yield[99,
p.119,eq.(26)]:

dσ
dΩ J←J0

=

∞∑
l=0

2J+1
(2l+1)2 ⟨JJ000|l0⟩2

∣∣∣∣∣−2
∫

r2 jl(qr)Vl(r)dr
∣∣∣∣∣2 ,
(22)

where we introduced the Clebsch-Gordan coefficient
⟨JJ000|l0⟩. The spherical Bessel function of order l, jl(qr),
depends on the norm of the electron momentum change vec-
tor: q = k−k0 leading to q = 2k sin(θ/2) when the energy loss
is neglected.

Except for H2, the experimental energy resolution of DCS
measurements[104] does not allow us to discern rotational ex-
citation levels. Therefore in practice (even for H2 unless spec-
ified), the DCS ought to be summed over the final rotational
excitation states J, which gives the interesting property of be-
ing independent from the initial state J0 (in the first Born ap-
proximation with k ≊ k0):
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∞∑
J=0

2J+1
(2l+1)

|⟨JJ000|l0⟩|2 = 1 , (23)

dσ
dΩ
=

∞∑
l=0

1
2l+1

∣∣∣∣∣−2
∫

r2 jl(qr)Vl(r)dr
∣∣∣∣∣2 . (24)

We can designate each of the terms of (24) inside the mod-
ulus brackets as a partial scattering Born amplitude[13] f̃l, as-
sociated with the potential term Vl of harmonic order l:

f̃l ≡ −2
∫

r2 jl(qr)Vl(r)dr . (25)

Additionally, if all Vl emerge exclusively from the decom-
position of a decentered isotropic potential; as VA(|r±R/2|)
in (19), we can establish a link (see the derivation of (A7) in
appendix A) to the scattering amplitude f̃A of VA:

f̃Al = (∓1)l(2l+1) jl(qR/2) f̃A . (26)

Furthermore, the simple expressions for the static (6) and
polarisation (9) potentials lead to analytical results for f̃s and
f̃p given in appendix B. The use of more accurate scattering
amplitudes in (26) will naturally lead to the IAM introduced
below (as demonstrated in appendix A) and will enable to
ward off the limitations imposed by the first Born approxi-
mation.

B. Independent Atom Model

To take advantage of our multicentral potential in (14), the
expression (26) can be reinjected into (24) to perform the infi-
nite summation of partial amplitudes (throughout (A9) of ap-
pendix A). The first Born DCS is then only composed of in-
dividual contributions f̃A, f̃A′ , f̃M , from each of the isotropic
potentials centered at A,A′ and M. In our specific case, f̃M is
only due to polarisation Vp. Nevertheless, we keep the molec-
ular notation M for an easier further generalisation.

This result, exact for the first Born approximation, is equiv-
alent to the zeroth order of multiple scattering theory[33] bet-
ter known as the independent atom approximation[67, Chap-
ter VIII§3.1]. It can be derived more simply by adding co-
herently in (27), this time, the exact scattering amplitudes
fA, fA′ , fM from each central potential and taking the square
modulus. In virtue of (2), the scattering amplitude fA pro-
duced by a potential VA displaced at ±R/2 is simply mod-
ulated by exp(∓iqR/2). Rotational averaging is in this case
performed by a normalised angular integral over the nuclear
axis R̂.

dσIAM

dΩ
=

1
4π

∫ ∣∣∣ fAeiqR/2+ fA′e−iqR/2+ fM
∣∣∣2 dR̂ ; (27)

= | fA|2+ | fA′ |2+ | fM |2+ 1
4π

∫
2ℜ[ fA f ∗A′e

iqR]

+2ℜ[ f ∗M( fAeiqR/2+ fA′e−iqR/2)]dR̂ ,

= | fA|2+ | fA′ |2+ | fM |2+2ℜ[ fA f ∗A′ ]
sin(qR)

qR

+2ℜ[ f ∗M( fA+ fA′ )]
sin(qR/2)

qR/2
. (28)

To obtain more accurate scattering amplitudes for (28) than
those of the first Born approximation, we apply the method of
partial waves.

C. Partial Wave Expansion

For a central potential, Schrödinger’s equation (1) can be
projected into the eigenset of spherical harmonics for the im-
pacting electron’s orbital angular momentum as eigenvalues
and solved independently for each order ℓ. Since central po-
tentials conserve the orbital momentum of the projectile, the
DCS obtained applies only to pure elastic scattering, the in-
formation of which is contained within the phase-shift[67,
Chapter 2] δℓ for each radial wavefunction. The latter can
be extracted from the asymptotic value (r →∞) of the vari-
able phase-shift[12] δℓ(r) which is a solution of a first-order
differential equation:

dδℓ(r)
dr

= −2V(r)kr2 [
cos(δℓ(r)) jℓ(kr)− sin(δℓ(r))yℓ(kr)

]2 ,

(29a)

δℓ(0) = 0 . (29b)

The spherical Bessel functions of the first jℓ and second yℓ
kind are solutions to the radial free-wave equation (1) with
V ≡ 0.

The behaviour of jℓ(kr)∼ (kr)ℓ/(2ℓ+1)!! for kr→ 0 lessens
the short-ranged influence of the potential as ℓ increases,
which in turn shrinks the asymptotic value reached by δℓ. As-
suming δℓ ≊ 0⇒ sinδℓ ≊ 0 and cosδℓ ≊ 1 in the RHS of (29a)
reduces to a simple integral[67, V§2.12 and II§2.27]:

δ̃ℓ = −2k
∫ ∞

0
V(r) j2ℓ (kr)r2dr . (30)

For high values of ℓ, we can thus expect lim
ℓ→∞

δ̃ℓ = δℓ and

determine a Lδ beyond which δℓ is assigned the value of δ̃ℓ. In
our case, for energies below 100 eV Lδ varied between 72 and
86 depending on the molecule. Those values decreased with
higher energies. The formulae used for computing δ̃ℓ for Vs
and Vp are given in appendix B.

The (elastic) scattering amplitude f (cosθ) can then be re-
constructed from those individual phase-shifts δℓ through a
series of Legendre polynomials Pℓ:
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f (cosθ) =
1

2ik

∞∑
ℓ=0

(2ℓ+1)(exp(i2δℓ)−1)Pℓ(cosθ) . (31)

The equivalent first Born amplitude of the central (atomic
or averaged molecular) potential is given as a linear
combination[67, V§2,p.89] of δ̃ℓ, therefore referred-to as
“Born phase-shifts”:

f̃ ≡ f̃ (cosθ) =
1

2ik

∞∑
ℓ=0

(2ℓ+1)2iδ̃ℓPℓ(cosθ) . (32)

In light of the convergence lim
ℓ→∞

δ̃ℓ = δℓ, one can truncate the

infinite sum of (31) up to L terms and include the remainder
through a formula known as the Born-closure[59, 82] for the
scattering amplitude:

f̂ (cosθ) = f̃ +
1

2ik

L∑
ℓ=0

(2ℓ+1)(exp(i2δℓ)−1−2iδ̃ℓ) . (33)

Here, f stands for either fA, fA′ , f0 which in our model are
all calculated by (31) with V(r) ≡ VA,VA′ ,V0(r) in (29a), and
then closed through (33). The upper partial bound L is chosen
such that δℓ < 10−6 : ∀ℓ > L and varies according to the energy
taken by the electron. The analytical expressions for f̃ from
the (dominant) static and polarisation potentials are given in
appendix B.

D. Combined model

Alone, the first Born approximation and the IAM are not ex-
pected to yield good results at lower energies. The equations
(30) and (32) from the previous section give an indication of
the errors committed in the first case. In the second case, (28)
should not hold well when the separate potentials VA,VA′ ,VM
overlap each other non-negligibly. This is certainly the case
for the polarisation potential which is of long range (cf. fig-
ure 2).

Nevertheless, those two approximations simplify signifi-
cantly the treatment of electron-molecule scattering. In order
to palliate their flaws, our approach consists in three steps :

1. Use exact partial-wave amplitudes fl in (26) instead of
first-Born calculated f̃l

2. Isolate and calculate the molecular scattering amplitude
f0 from the spherically averaged molecular potential
V0 in (15) which includes the polarisation potential Vp
(also labelled as VM in the IAM).

3. Subtract the zeroth-order interference term in the IAM
and substitute it by the molecular amplitude f0.

The first step is analogue to the IAM when one replaces f̃
by f in (A8) to conduce to (28). The second step enables an
exact treatment of the interferences arising between the polar-
isation and the first (isotropic) spherical harmonic of the sepa-
rated atoms. The third step is equivalent to executing the sum-
mation (A9) on spherical Bessel functions from l = 1 to∞.
This procedure, detailed in the appendix A, leads to our “sim-
ple” model (A10):

1
C

dσS imple

dΩ
= | f0|2+ | fA|2+ | fA′ |2+2ℜ[ fA f ∗A′ ]

sin(qR)
qR

− j0
(qR

2

)2
| fA+ fA′ |2 . (34)

Comparing with (28), we see that | f0|2 now effectively in-
corporates high-order interferences between the middle term
fM and the isotropic component fA0, fA′0 of the two atoms.
We show below (top row of figure 3) that this procedure en-
hances the validity of the IAM at lower energies. Notwith-
standing, we ought to keep in mind that higher-order inter-
ference terms between isotropic and anisotropic terms remain
untreated, for (26) might not apply well to partial-wave am-
plitudes f at lower energies. The forthcoming results section
should elucidate this limitation. As the first Born approxima-
tion becomes increasingly more valid at higher energies, the
simple expression (34) converges toward the IAM (see fig-
ure 6, lower panel at 400 eV). This property emerges from the
equivalence of (A8) and (A10), and from the linearity of the
scattering amplitude (25) with respect to the potentials.

Finally, it is well known that the IAM does not satisfy the
optical theorem[53, eq. 9-11] for the integrated cross section.
For this reason, many attempts[6, 46, 110] of renormalising
the DCS based on geometrical arguments were conducted. We
retain here the simplest model[6] in which the DCS (lhs of 34)
is renormalised with a correction factor C:

C = 1− σAσA′

σA+σA′

(
1

max(πR2,σA,σA′ )

)
(35)

The simplicity of the model presented above may be con-
fusing due to the many approximations taken. To offer a better
understanding of the ensuing limitations and their range of va-
lidity, we implemented a more “advanced” potential with :

• static density and potential based on Cox and Bonham
[23]’s 6-term Yukawa distribution;

• modified semi-classical exchange potential from Gi-
anturco and Scialla [31, eq. 18];

• Buckingham polarisation (9) with rc =√
( 3

2 Eion+6E)/Eion for the cutoff radius as in Onda
and Truhlar [72, eq. 6] instead of (10);

• Perdew and Zunger [74]’s untruncated correlation po-
tential for atoms as used in Salvat [81, eq. 7];

• Absorption based on Salvat [81]’s appendix for binary
collision cross section as used in ELSEPA.
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H2 N2 O2 CO NO
R (a0) 1.4011 2.0743 2.281 2.1322 2.1746
α0 (a3

0) 5.426 11.74 10.67 13.15 11.47

Eion (eV) 15.426 15.581 12.07 14.014 9.264
Eth (eV) 6.9 6.17 7

(0.977)
6.006 5.48

TABLE II. Molecular parameters: R - internuclear separation[51, ta-
ble 2.1], α0 - static dipole polarisability[51, table 4.6] (for eq.9), Eion
- ionisation energy[51, table 3.3] (for eq.10), Eth - threshold (elec-
tronic) excitation energy[78] (for eq.11). For O2 we distinguish the
first optically allowed state (from the first valence state in brackets),
as discussed below

In order to avoid impairing the accuracy of this advanced
potential, we also precisely calculated the spherical average
of the non-static components following (18) to be used in the
molecular potential in (14). Using this last “advanced” model
as a basis for comparison, we would like to demonstrate that
depending on the molecule and energy considered, the use of
simpler models can still lead to satisfactory results.

IV. RESULTS

The simple model we presented earlier (34) is compared to
ELSEPA[84]’s independent atom model and contrasted with
the advanced model that involves more accurate potentials.
For each molecule, we then show and recommend the minimal
changes to the simple model that enable to preserve the level
of accuracy of the advanced model.

The effect of each parameter can be appreciated by looking
at the potentials for each molecule in figure 2. The peak ob-
served for the static and exchange potentials is located exactly
at half the internuclear separation R/2. Inclusion of higher-
order spherical harmonics would reconstruct the singularity
of the decentered Yukawa potential. This peak is weakly pro-
nounced for hydrogen, denoting its relative spherical shape.
The highest polarisability α0 belongs to N2, raising the po-
larisation dashed-curve at the origin. One can see that the
sensitivity upon the exact value of the average excitation en-
ergy Eexc is effectively low. On the contrary, the absorption
is rather sensitive on the threshold energy Eth, and is over-
whelmingly important for O2 due to its low-lying excited sin-
glet state.

In figure 3, we present elastic differential cross-sections in
three different energy ranges for H2, N2 and O2 and compare
them with experimental data detailed in the figure’s caption.
One can observe how the agreement of each model depends
both on the molecule and the energy chosen.

A. H2

Hydrogen is by far the least aspherical molecule with a sep-
aration radius of only 1.4 a0 as opposed to over 2 a0 for nitro-
gen and oxygen. As a consequence, the molecular spherical

average analysis yields accurate results even at energies as low
as 20 eV. On the other hand, with only two orbiting electrons,
local density approximations for the exchange, correlation and
absorption potentials do not apply well.

Nonetheless, it was shown[3] that the semi-classical model
for exchange fitted best an exact non-local treatment of the ex-
change. The correlation causes the short-range potential to fall
less sharply and induces the lump seen at small angle scatter-
ing for the advanced model (dashed curve). Next, an absorp-
tion potential based on a binary collision cross section with
molecular electrons modelled as a free electron gas, such as
the ones presented here, is not relevant for hydrogen. Previ-
ous studies[52, 66] on H2 using potential scattering accounted
for the static-exchange-polarisation trio. There, the polarisa-
tion term treats rigorously the higher-order interactions of the
scattering electron with molecular electrons.

For purely illustrative purposes, the light-red and purple-
dashed curves on the left column of figure 3 show how the
unsuitable inclusion of correlation and absorption for H2 is re-
spectively characterised by an overestimation (lump) at small
angles and a minor underestimation at large angles. The effect
of absorption is reduced due to the relatively high excitation
threshold of H2 and low molecular electronic density. This
underlines the dominance of the static potential at non-small
scattering angles.

Remarkably, our simple static-exchange-polarisation po-
tential represented by the thick-blue curve on figure 3 covers
well a wide range of energies, which we interpret as resulting
from the relative simplicity of the hydrogen molecule. Be-
cause the molecular contribution to the DCS prevails over the
IAM at intermediate energies, no correction factor was used
(C ≡ 1) in any of the DCS and CS for H2 on figures 3-4. In this
case, we recommend directly using our simple model which
is why the solid-olive curve for H2 is not visible on figure 3.

B. N2

For nitrogen, we observe the typical dip (also present for
oxygen) around 20-40 eV at intermediate angles due to the
IAM interference term sin(qR)/qR passing through a min-
imum around qR ≊ 3

2π that coincides with the cusp in the
atomic scattering amplitude around 90°for R ≃ 2a0. This arte-
fact can be bypassed with the molecular scattering amplitude,
albeit with a slight overestimation instead. On the top mid-
dle graph of figure 3, we compare four different models. The
dashed line represents the advanced model with an accurate
treatment of the spherical averaging.

Here we can best assess the error committed by the simpli-
fication taken in (19) by naively replacing ρ by ρ0. At higher
energies, this simplification is acquitted by two effects. First,
the exchange potential becomes effectively more linear as can
be seen in (8). Second, absorption does principally affect the
DCS at larger angles[59, 81, §V.]. By contrast, for higher en-
ergies, the contribution of the molecular potential V0 is only
relevant at small angles. For this reason, above roughly 50 eV
this simplification becomes acceptable.

At lower energies, a close-coupled study[59, 96] reveals
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FIG. 2. Isotropic potentials V0 of H2, N2 and O2 from the simple model presented above for an incident electron of 50 eV. Solid-brown: Static
Yukawa (20), dotted-green (· · · ): Exchange (8), dashed-purple (--): Polarisation Buckingham (9), dash-dot-grey (− ·−): Absorption Quasifree
(11). For O2 we show how this absorption potential differs for Eth = 0.977 eV and 7 eV.

that the coupling between different partial-waves becomes im-
portant for the first orders. This implies that one has to include
more spherical harmonics in the molecular potential (15) and
abandon the zero-order interference given by the IAM.

Interestingly, the main difference at higher energies (middle
and bottom rows in figure 3) between our advanced and simple
models builds up at small-angle scattering due to a too weak
polarisation-correlation potential at small radii. The inclu-
sion of a more accurate potential[74, Appendix C] straightens
the forward scattering for N2 and O2 for the advanced model
given by the dashed curve. Thus the blue curve showing our
recommendation just adds this correlation[81, §A eq.7] poten-
tial to our simple model in (13).

C. O2

The most interesting discussion emerges from the results
for oxygen. Its first excited singlet state is not far above the
ground triplet state, leaving a very small electronic excitation
threshold at 0.977 eV. As a result, the quasifree absorption
potential in (11) is greatly overestimated and spoils low-order
phase-shifts for ℓ=2..8, by inducing a considerable rotation in
the complex plane through their differential equation (29a).
The two drops around 40°and 100°of the simple model re-
sult from this excessive absorption. There are two ways to
amend this inaccuracy. As suggested by Blanco and Garcı́a
[5, §II.C], one ought to take the first optically allowed exci-
tation state for Eth which in the case of O2 lies at the foot of
the Schumann-Runge continuum[55, 108, §3.8,§1] that is set
at 7 eV. Alternatively, the more accurate albeit cumbersome
potential model[81] used by ELSEPA presents a lower sensi-
tivity to the threshold energy and reproduces well the results
for Eth = 0.977 eV.

Furthermore, there is an ambiguity in the selection of lower
excitation threshold when representing the potential of an
atom within the molecule. As can be seen on figure 3, espe-
cially for O2, the two absorption potentials (quasifree[5, 91]

of eq. (11-12) and ELSEPA[81, §B.(12)]) do not yield equiv-
alent DCS at intermediate energies. The interpretation of the
minimal threshold depends on the model used. For the other
molecules, N2, CO and NO, their lowest electronic state is not
isolated from higher excited states as for O2, which we sur-
mise is why it is not required, in those cases, to select a higher
electronic threshold ∆ to be used in the quasifree model (11).

D. Integral and momentum-transfer cross sections

An overview of the performance of various models can
be better assessed by looking at their integrated (σ) and
momentum-transfer (σm) cross sections in figure 4. The lat-
ter are obtained from the DCS through an integration in the
angular solid space:

σ = 2π
∫ π

0

dσ
dΩ

(cosθ) sinθdθ , (36)

σm = 2π
∫ π

0

dσ
dΩ

(cosθ)(1− cosθ) sinθdθ . (37)

The earlier analysis conducted upon the DCS in figure 3 is re-
stated in figure 4. For hydrogen, the simple model presented
performs best in generating elastic cross-sections in the en-
ergy range 10eV-1keV, due to its short internuclear separation.
ELSEPA’s results converge to our model beyond 100 eV for
the momentum-transfer and beyond 2 keV for the integrated
cross-section. The disagreement at small-angle scattering of
the advanced model seen on figure 3-left is responsible for
the systematic bias in the CS on the top right graph of fig-
ure 4. However, when switching to the momentum transfer,
this discrepancy is washed out through the (1− cosθ) factor
in the formula (37). For nitrogen and oxygen, the correction
factor C from (35) is essential for obtaining a good agreement
with the integrated DCS. Otherwise, the curves would present
a systematic overestimation similar to the one given by the
IAM with ELSEPA on the top row of figure 4.
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FIG. 3. Differential cross sections (in units of a2
0/sr) of H2, N2 and O2 at various energies. Theoretical calculations: thick-blue: our rec-

ommended model (see text), solid-olive: our simple model represented by the equation (34), light-red: ELSEPA’s independent atom model,
dashed-purple (–): advanced model described at the end of section III D. Experimental data: H2 - ⋆: Srivastava et al. [89], ⋄: Shyn and Sharp
[87] , △: Khakoo and Trajmar [49] , ▽: Muse et al. [68] □: van Wingerden et al. [107]; N2 - ⋆: Srivastava et al. [90], ⋄: Shyn and Carignan
[86] , △: DuBois and Rudd [26] , □: Herrmann et al. [35]; O2 - ⋄: Shyn and Sharp [88]

An overall agreement is reached at higher energies beyond
200 eV. As expected, ELSEPA and our advanced model con-
verge since they rely upon a similar potential. However a shift
in the momentum transfer persists on the bottom row of fig-
ure 4. This denotes the fact that scattering at large angles
differs in our simple model. Again, this is induced by the
two different modelling approaches to the absorption poten-
tial. Experimental data is lacking above 100 eV to help in
settling this issue.

E. NO & CO

Finally, the model can also be applied to heterogeneous di-
atomic molecules, with selected examples shown in figure 5
for CO and NO. The conclusions are similar: the polarisa-
tion is underestimated and needs to be supplemented with
the correlation potential from the advanced model, the cor-
rection factor C greatly reduces the systematic bias at lower
energies, and the effect of | f0|2 in equation (34) introduces
a slight overestimation at intermediate angles (best seen for
NO) whereas ELSEPA’s results present an underestimation
dip around 100°. In addition, it is possible that CO and NO’s
permanent dipole[2, 26, 99] have a small contribution in the
forward scattering.

V. DISCUSSION

We presented a methodology for computing electron elas-
tic scattering cross-sections with diatomic molecules that con-
nects the independent atom model (IAM) valid at high ener-
gies to the partial-wave shifts of a molecular potential apt at
lower energies. To connect those two approaches, we bor-
rowed the deconstruction of the IAM as a sum of first Born
amplitudes and proposed to replace the latter by the more ac-
curate amplitudes coming from the partial-wave analysis.

The resulting DCS palliate the shortcomings of the IAM
at lower energies by removing dips caused by an insufficient
description of higher interatomic interference terms[38]. The
agreement in shape can be considered satisfactory even down
to 30 eV which we consider the validity range of our method.
Nevertheless, due to the violation of the optical theorem by the
IAM[53, eq.9-11], our DCS at lower energies tend to overes-
timate scattering over all angles and require a screening cor-
rection factor[6] as defined by (35). Also, at below 30 eV,
our DCS gradually flattens the cusp observed experimentally
at intermediate angles.

Previous studies presented different ways[19, 58] to
treat atomic-centered potentials and long-range molecular
potentials[45] through the IAM augmented with multiple
intra-molecular scattering corrections[33, 34, 54]. The anal-
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FIG. 4. Integrated (top) and momentum transfer (bottom) elastic cross-sections of H2, N2 and O2 (in units of a2
0). Theoretical calculations:

thick-blue: our recommendation based on our simple model represented by the equation (34), light-red: ELSEPA’s independent atom model,
dashed-purple (–): advanced model described at the end of section III D. Experimental (lxcat-2018) databases[73]: ×: Phelps database[75] , ◦:
Itikawa database[40, 41, 109] with ±20% of uncertainty.

ysis revealed that higher-order terms become important[38,
§3] below 60 eV and the convergence is slow[53, 101, fig-
ure 7,p.1918-1919]. With the present methodology, one can
significantly incorporate the effects of intra-molecular scatter-
ing through a partial-wave analysis (yielding | f0|2 in equation
34) on the isotropic molecular potential V0. In figure 6, we
compare our model with the screened IAM model of Blanco
and Garcı́a [7] and higher-order IAM of Hayashi and Kuchitsu
[33] as implemented by Jain and Tayal [45]. Also represented
are the separate contributions of the molecular isotropic term
| f0|2 from the remaining inter-atomic interferences terms of
equations (34) or (A10). We see that while all models con-
verge at higher energies where the Born approximation be-
comes more acceptable, the situation is different at lower en-
ergies.

Of particular interest is that the higher-order IAM (in or-
ange), through its corrections of single and double scattering
interference terms, gives an overall good agreement without
requiring any rescaling with a screening factor C as defined
by (35). Since the present model is a ‘resummation’ of the
multiple IAM but limited to the zero-order interference, fur-
ther improvement could be sought by incorporating higher-
order interferences from multiple scattering into (34). Without
this extension, by using a separate treatment of the isotropic

molecular (V0) and the atomic (VA,VA′ ) potentials, our model
still brings an improvement on the screened IAM at lower en-
ergies and simplifies the treatment of higher-order IAM.

Looking toward the low energy limit, at least three lim-
itations were identified that invalidate the use of our sim-
ple model below 30 eV. First, a correct averaging of the
potential harmonics is recommended: i.e. use (18) in-
stead of (19). Second, the absorption potential requires
some revision. Either a corrective factor should be used[77,
81, 94, eq.(3),eq.(12),eqs.(1-3)] or a different energy thresh-
old considered[5, §II.C]; otherwise a more elaborate model
should be required. Third, more advanced calculations
(Coupled-Channels[65] and Schwinger-variational[59, eq.6-
12]), show in fact that accurate results can be obtained when
yet another version of the absorption model[93, §3.2.3] is
used, provided a completely different interpretation of the en-
ergy threshold Eth is taken[44, 60, §II.B]. This implies that
the coupling between different phase-shifts due to the aspheri-
cal (multipole) components of the molecular potential become
important below 30 eV. Another limitation of our method may
come from the fact that we subtracted the zeroth interatomic
interference term j0(qR/2) in (34) from the IAM according
to first Born amplitudes f̃ that does not rigorously apply to
partial-wave amplitudes f . At high energies, this results in a
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FIG. 5. Differential cross sections applied to heterogeneous
molecules: CO and NO. Theoretical calculations: thick-blue: our
recommended model (see text), solid-olive: our simple model repre-
sented by the equation (34), light-red: ELSEPA’s independent atom
model, dashed-purple (–): advanced model described at the end of
section III D. Experimental data: CO - ⋆: Tanaka et al. [100] , NO -
⋆: Mojarrabi et al. [63]

slight overestimation of the present model at small scattering
angles with respect to the IAM as seen in figure 6-bottom. The
theory of multiple scattering shows that such overestimations
can be corrected through inclusion of higher-order interfer-
ence terms as conveyed by the orange curve on figure 6.

A notable exception is the case of H2 which was tested
down to our lowest limit value of 10 eV yielding reasonable
agreement without requiring screening correction. This sur-
prisingly good performance is due to the reduced internuclear
separation distance, giving a prominent role to the isotropic
term of the molecular potential.

Regarding scattering at higher energies, since the molecule
is represented as two unperturbed individual atoms, the energy
threshold used in the quasifree absorption potential should
rather be based on the atomic excitation threshold to stay con-
sistent. The decomposition of our model enables one to use a
different energy threshold for the molecular isotropic potential
and the individual atomic potentials. This could potentially
improve the consistency of the IAM throughout a large energy
range and avoid to use corrective scaling factors as suggested
in Staszewska et al. [94, eq.(1-2)] or Raj and Kumar [77] for
O2 specifically.

In light of the good overall agreement obtained, we suggest
using our model’s DCS for “ordinary” diatomic molecules
down to 30 eV and for H2 to 15 eV. They can provide
a relatively simple way to build a database for predicting
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FIG. 6. Illustration of the present model (blue) compared with
the screened independent atom model[7] (dark red) and higher-
order multiple scattering IAM (orange). The dashed and dotted
curves show how the contribution of | f0|2 (--) and 2| fA|2(1+ j0(qR)−
2 j20(qR/2)) (· · · ) differ at low (40 eV) and high (400 eV) energies.
Experimental data: N2 - ⋆: Srivastava et al. [90], ⋄: Shyn and Carig-
nan [86] ; O2 - ⋆: Daimon et al. [24], △ : Iga et al. [37]

elastic scattering at intermediate energies in Monte-Carlo
electron collision simulations. For lower energy scattering,
the users can either resort to very accurate albeit somewhat
costly computations[9, 52, 96] or to more semi-empirical
treatments[7, 36, 62].

In principle, the present methodology could include more
realistic static potentials in the isotropic part arising from the
molecular bond. Also, generalisation for linear polyatomic
molecules, notably CO2 would not require significant effort.
In this latter case, one would simply need to add the atomic
potential of the middle carbon atom VC into the averaged po-
tential V0 of equation (19), which would affect the calculated
f0 used in (34). In the future, this methodology could be tried
upon more complex molecules for which the IAM is not sat-
isfactory.

VI. SUMMARY AND CONCLUSIONS

Our calculations show that basic models relying upon a
minimalistic description of the optical potential are suitable
for the generation of DCS databases for elastic scattering
with diatomic molecules from intermediate to higher energies,
where the experimental data is either outdated, sparse, incom-
plete or controversial. The main key-points are summarised
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below.

1. An averaged isotropic molecular potential can signif-
icantly improve the accuracy of differential cross sec-
tions calculated with the independent atom model.

2. A screening correction factor is essential to enhance the
agreement of integrated cross sections at intermediate
energies below 200 eV.

3. When using the ‘quasifree’ semi-empirical model for
absorption of Staszewska et al. [92], better agreement
is found for O2 provided the ‘excitation threshold’ Eth
is identified with the first optically allowed transition.

4. Our model, without correlation and absorption, is par-
ticularly well suited to describe electron elastic scatter-
ing by H2 due to its short internuclear separation.
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Appendix A: Born approximation applied to decentered
potentials

To show how the IAM is in fact a summation over Born par-
tial amplitudes, let’s first express a decentered central (atomic)
potential VA in terms of the Fourier transformed ṼA:

VA(r) =
1

(2π)3/2

∫
ṼA(k)exp(ikr)d3k (A1)

VA(r± R
2

) =
1

(2π)3/2

∫
ṼA(k)exp(ik(r±R/2))d3k , (A2)

VA(r± R
2

) =
4π

(2π)3/2

∫
ṼA(k) (A3)

×
∑

l

(∓1)l jl(kr) jl

(
kR
2

)
(2l+1)Pl(cosχ)k2dk .

In (A3) we used a product of two Rayleigh expansions[1,
§10.1.47]:

exp(−iqr) =
∞∑

l=0

(2l+1)(−i)l jl(qr)Pl(cos(q̂r)) , (A4)

(where q̂r expresses the angle between q and r), the addition
theorem[70, 14.30.9] and orthogonality[1, 14.30.8] of Legen-
dre polynomials through spherical harmonics, with χ being
the angle between r and R as in figure 1.

We recognise now through the Legendre polynomial
Pl(cosχ), the spherical-harmonic component VAl of a decen-
tered central potential as in (15). Replacing (A3) into the in-
tegral (25) for the Born scattered wave f̃Al, we obtain:

f̃Al ≡ −2
∫

r2 jl(qr)VAl(r)dr = −2
∫

r2 jl(qr)
4π

(2π)3/2

×
∫

ṼA(k)(∓1)l jl(kr) jl(kR/2)(2l+1)k2dkdr . (A5)

Applying the identity[70, 1.17.14]:∫
r2 jl(kr) jl(qr)dr =

π

2q2 (δ(k−q)+ (−1)lδ(k+q)) (A6)

we can swap in (A5) the integrals on dk and dr. Then using
(A6) for the dr integration, we have:

f̃Al = −2
2π2

(2π)3/2 ṼA(q)(∓1)l jl(qR/2)(2l+1)

= (∓1)l(2l+1) jl(qR/2)
−2
4π

∫
VA(r)e−iqrd3r

= (∓1)l(2l+1) jl(qR/2) f̃A (A7)

Replacing this into Born’s expression (24), in addition to the
polarisation Vp (which appears only for the isotropic l = 0
term), the combination of IAM with Born’s approximation for
vibrationally elastic scattering gives:

dσ
dΩ
=

∞∑
l=0

1
2l+1

∣∣∣∣∣−2
∫

r2 jl(qr)(VAl(r)+VA′l(r)+δl0Vp(r))dr
∣∣∣∣∣2

=

∞∑
l=0

1
2l+1

∣∣∣(2l+1) jl(qR/2)( f̃A+ (−1)l f̃A′ )+δl0 f̃M
∣∣∣2

=

∞∑
l=0

(2l+1) j2l (
qR
2

)| f̃A+ (−1)l f̃A′ |2

+2ℜ[ f̃ ∗M( f̃A+ f̃A′ )] j0(
qR
2

)+ | f̃M |2

= | f̃A|2+ | f̃A′ |2+ | f̃M |2+2ℜ[ f̃A f̃ ∗A′ ]
sin(qR)

qR

+2ℜ[ f̃ ∗M( f̃A+ f̃A′ )]
sin(qR/2)

qR/2
(A8)

The infinite summation on the product of spherical
Bessel functions comes from their addition theorem[1,
§10.1.45,p.440] :

∞∑
l=0

(2l+1) j2l (
qR
2

)(±1)l =

 1
sin(qR)/qR ≡ j0(qR)

(A9)

The result obtained (A8) corresponds to the zero-order ex-
pansion in the multiple scattering theory of Hayashi and Ku-
chitsu [33, eq.15,18&31]. Noting in fact that V0 ≡VA0+VA′0+
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Vp as in (16), we can now group the terms in (A8) differently
and separate the l = 0 term:

dσ
dΩ
=

∣∣∣∣∣−2
∫

r2 j0(qr)V0(r)dr
∣∣∣∣∣2

+

∞∑
l=1

1
2l+1

∣∣∣∣∣−2
∫

r2 jl(qr)(VAl(r)+VA′l(r))dr
∣∣∣∣∣2

= | f̃0|2+
∞∑

l=1

(2l+1) j2l (
qR
2

)| f̃A+ (−1)l f̃A′ |2

= | f̃0|2− j20
(qR

2

)
| f̃A+ f̃A′ |2

+

(
| f̃A|2+ | f̃A′ |2+2ℜ[ f̃A f̃ ∗A′ ]

sin(qR)
qR

)
(A10)

We have now uncovered a formula that explicitly links the
IAM to a decomposition of anisotropic terms f̃l from Born’s
first order approximation. In particular, we can relate the first
isotropic term | f̃0|2 in (A10) to the interferences of a molecular
term f̃M with atomic terms f̃A and f̃A′ in (A8) and their first
harmonic j0( qR

2 )2 interatomic interference.

Appendix B: Analytical Born amplitudes and Phases

For the simple potentials presented: Yukawa-static (6)
and Buckingham-polarisation (9), the first Born integrals for
the amplitude (4) and the phase-shifts (30) can be com-
puted analytically[32, see 6.623(1),6.612(3) for Yukawa and

6.565(3),6.541(1-2) for Buckingham]:

Static Atomic:

f̃A = −2Z
∫ ∞

0
−

NY∑
i=1

γi
e−λir

r
j0(qr)r2dr =

NY∑
i=1

2Zγi

q2+λ2
i

(B1)

δ̃Aℓ = −2k
∫ ∞

0
−Z

NY∑
i=1

γi
e−λir

r
j2ℓ (kr)r2dr =

Z
k

NY∑
i=1

γiQℓ(1+
λ2

i

2k2 )

(B2)

Polarisation:

f̃B = −2
∫ ∞

0
−α0 j0(qr)r2

2(r2+ r2
c )2

dr =
α0π

4rc
exp(−qrc) (B3)

δ̃Bℓ = −2k
∫ ∞

0
−α0 j2ℓ (kr)r2

2(r2+ r2
c )2

dr =
α0π

2rc
(Iℓ+ 1

2
(krc)K′

ℓ+ 1
2
(krc)+

1
2krc

)

(B4)

The functions introduced are the Legendre function[1,
Chapter 8] of the second kind Qℓ, the modified Bessel
functions[1, Chapter 9] of the first Iℓ+ 1

2
and second Kℓ+ 1

2
kind.

The static molecular terms arise from integrals (4) and (30)
with V taken as the static spherically-averaged potential Vs0
(20). For the phase-shift however, the integral has to be partly
calculated by numerical quadrature. We give two variants in
(B6) based on the partial-wave order ℓ and the magnitude of
λiR/2.

Static Molecular:

f̃0 = ( f̃A+ f̃A′ ) j0(qR/2) = ( f̃A+ f̃A′ )
sin(qR/2)

qR/2
(B5)

δ̃Mℓ = −2k
∑
A,A′

(−Z)
NY∑
i=1

γi

∫ R
2

0

e−λiR/2

R/2
sinh(λir)
λir

j2ℓ (kr)r2dr+
∫ ∞

R
2

e−λir

r
sinh(λiR/2)
λiR/2

j2ℓ (kr)r2dr



= 2k
∑
A,A′

Z
NY∑
i=1

γi


sinh(λiR/2)
λiR/2


R
2∫

0

sinh(λi(r− R
2 ))

sinh(λi
R
2 )

j2ℓ (kr)r2dr+
1
2

Qℓ(1+
λ2

i

2k2 )

 ; λiR/2 ⪅ 1, ℓ≫ 1

1
λiR

∞∫
0

e−λi |r−R/2| j2ℓ (kr)r2dr− e−λiR/2

2
Qℓ(1+

λ2
i

2k2 )

 ; λiR/2 > 1, ℓ ≊ 1

(B6)

The integrals over Vex and Vabs, would have to be computed by numerical quadrature.
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